super_log
题意是有个一函数log a*(x) ,x<1时为-1,x>1为1+log a*(log a(x))
给你a,b,m让求最小使不等式(log a*(x)>=b)成立的最小x%m
这题可以转换为求a的a次方的a次方……b个,模于m。
求幂可以用快速幂,然后必须降幂,因为m不一定是素数,所以这里就要用广义欧拉降幂来降幂了,否则幂就会因为太大而出错。
广义欧拉降幂需要求欧拉函数。这里用的筛法求的。
如有不懂欢迎提问。
java代码
import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.util.Scanner;
public class Main {
static StreamTokenizer st = new StreamTokenizer(new BufferedInputStream(System.in));
static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
static PrintWriter pr = new PrintWriter(new BufferedOutputStream(System.out));
static Scanner sc = new Scanner(System.in);
static int N = 1000005;
static int prime[] = new int[N], phi[] = new int[N], cnt = 0;
static int n = 1000000;
static boolean vis[] = new boolean[N];
static void make_phi() {
vis[0] = vis[1] = true;
for (int i = 2; i <= n; i++) {
if (!vis[i]) {
prime[++cnt] = i;
phi[i] = i - 1;
}
for (int j = 1; j <= cnt && prime[j] * i <= n; j++) {
vis[i * prime[j]] = true;
if (i % prime[j] == 0) {
phi[i * prime[j]] = phi[i] * prime[j];
break;
} else
phi[i * prime[j]] = phi[i] * (prime[j] - 1);
}
}
}
// long tic = System.currentTimeMilis();
// long toc = System.currentTimeMillis();
// System.out.println("Elapsed time: " + (toc - tic) + " ms");
public static void main(String[] args) {
make_phi();
int T = nextInt();
while (T-- > 0) {
int a = nextInt();
int b = nextInt();
int m = nextInt();
if (b == 0) {
System.out.println(1 % m);
} else {
System.out.println(f(a, b, m));
}
}
}
static long f( long a, long b,long mod) {
if (mod == 1)
return 0;
if (b == 0) {
return 1;
}
long p = f(a, b - 1,phi[(int) mod]);
if (p >= phi[(int) mod] || p == 0)
return pow(a, p + phi[(int) mod], mod);
else
return pow(a, p, mod);
}
static long pow(long a, long b, long mod) {
if (b == 0)
return 1;
if (b == 1)
return a % mod;
if ((b & 1) == 0)
return pow(a * a % mod, b >> 1, mod) % mod;
else
return a * pow(a * a % mod, b >> 1, mod) % mod;
}
static long gcd(long a, long b) {
if (b == 0) {
return a;
} else {
return gcd(b, a % b);
}
}
static int nextInt() {
try {
st.nextToken();
} catch (IOException e) {
e.printStackTrace();
}
return (int) st.nval;
}
static double nextDouble() {
try {
st.nextToken();
} catch (IOException e) {
e.printStackTrace();
}
return st.nval;
}
static String next() {
try {
st.nextToken();
} catch (IOException e) {
e.printStackTrace();
}
return st.sval;
}
static long nextLong() {
try {
st.nextToken();
} catch (IOException e) {
e.printStackTrace();
}
return (long) st.nval;
}
}